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We propose a rate equation approach to compute two vertex correlations in scale-free growing network
models based on the preferential attachment mechanism. The formalism, based on previous work of Szabóet
al. fPhys. Rev. E.67, 056102s2002dg for the clustering spectrum, measuring three vertex correlations, is based
on a rate equation in the continuous degree and time approximation for the average degree of the nearest
neighbors of vertices of degreek, with an appropriate boundary condition. We study the properties of both two
and three vertex correlations for linear preferential attachment models, and also for a model yielding a large
clustering coefficient. The expressions obtained are checked by means of extensive numerical simulations. The
rate equation proposed can be generalized to more sophisticated growing network models, and also extended to
deal with related correlation measures. As an example, we consider the case of a recently proposed model of
weighted networks, for which we are able to compute a weighted two vertex correlation function, taking into
account the strength of the interactions between connected vertices.

DOI: 10.1103/PhysRevE.71.036127 PACS numberssd: 89.75.Hc, 87.23.Ge, 05.70.Ln

I. INTRODUCTION

Many natural and manmade complex systems can be
fruitfully represented and studied in terms of networks or
graphsf1g, in which the vertices stand for the elementary
units that compose the system, while the edges picture the
interactions or relations between pairs of units. This topo-
logical representation has found many applications in fields
as diverse as the internetf2g, the worldwide webf3g, biologi-
cal interacting networksf4–6g, or social systemsf7g, leading
to the development of a new branch of statistical mechanics,
the modern theory of complex networksf8,9g.

The empirical study of real complex networks, promoted
by the recent accessibility to computers powerful enough to
deal with very large databases, has uncovered the presence of
some typical characteristics. The three most relevant of these
are the following.sid The small-world propertyf10g, defined
by an average shortest path length—average distance be-
tween any pair of vertices—increasing very slowlyslogarith-
mically or more slowlyf11gd with the network sizeN. sii d
The presence of a large transitivityf7g, which implies that
two neighbors of a given vertex are also connected to each
other with large probability. Transitivity can be quantitatively
measured by means of the clustering coefficientci of vertex
i f10g, defined as the ratio between the number of edgesmi
existing betwen theki neighbors ofi, and its maximum pos-
sible value, i.e.,ci =2mi / fkiski −1dg. The average clustering
coefficient, defined asC=oici /N, usually takes quite large
values in real complex networks.siii d A scale-free behavior
for the degree distributionPskd f8,9g, defined as the probabil-
ity that a vertex is connected tok other verticesshas degree
kd, that shows a power-law behavior

Pskd , k−g, s1d

whereg is a characteristic degree exponent, usually in the
range 2,g,3. A major role is especially played by the
scale-free nature of many real complex networks, which im-

plies a large connectivity heterogeneity, at the basis of the
peculiar behavior shown by dynamical processes taking
place on top of these networks, such as the resilience to
random damagef12–14g, the spreading of infectious agents
f15–18g, or diffusion-annihilation processesf19,20g.

From a theoretical point of view, the empirical research
has inspired the proposal of new network models, aimed at
reproducing and explaining the properties exhibited by com-
plex networks. In this respect, many efforts have been de-
voted to develop models capable of accounting for a scale-
free degree distribution. Classical network modeling was
previously based on the Erdös-Renyi random graph model
f21,22g, which is a static modelsi.e., defined for a fixed
number of verticesNd yielding small-world networks with a
Poisson degree distribution. A change of perspective in net-
work modeling took place after the introduction of the pref-
erential attachment paradigm first proposed by Barabási and
Albert sBAd f23g. The insight behind this concept is the re-
alization of two facts. First, most complex networks are the
result of a growth process, in which new vertices are added
in time to the system. Second, new edges are not placed at
random, but tend to connect to vertices that already have a
large degree. It turns out that these two ingredients are able
to reproduce scale-free degree distributions with a tunable
degree exponentf23,24g. Moreover, it has been shown that
not all sorts of preferential attachment are able to generate a
power-law degree distribution, but only those in which new
edges attach to vertices with a probability strictly linear in
their degreef25g, and that some alternative mechanisms,
such as the copying modelf26g, implicitly define a linear
preferential attachment dynamics.

While a proper characterization and understanding of the
origin of the scale-free degree distribution displayed by most
real complex networks is a fundamental task, it has been
recently realized that this property does not provide a suffient
characterization of natural networks. In fact, these systems
seem to exhibit also ubiquitous degree correlations, which
translate into the fact that the degrees of the vertices at the
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end points of any given edge are not independentf27–30g.
Two vertex degree correlation can be conveniently measured
by means of the conditional probabilityPsk8 ukd that a vertex
of degreek is connected to a vertex of degreek8. For uncor-
related networks, in which this conditional probability is in-
dependent ofk, it can be estimated as the probability that any
edge end points to a vertex of degreek8, which is simply
given byPncsk8 ukd=k8Psk8d / kkl f31g. The empirical evalua-
tion of Psk8 ukd in real networks is usually a cumbersome
task, restricted by finite size data, yielding noisy results. For
this reason, it is more practical to analyze instead the average
degree of the nearest neighbors of the vertices of degreek,
which is formally defined asf27g

k̄NNskd = o
k8

k8Psk8ukd. s2d

For uncorrelated networks, in whichPsk8 ukd does not de-
pend onk, we have

k̄NN
nc skd =

kk2l
kkl

, s3d

independent ofk. Thus, ak̄NNskd function with an explicit
dependence on the degree signals the presence of two vertex

degree correlations in the network. Whenk̄NNskd is an in-
creasing function ofk, the network showsassortative mixing
f29g svertices of large degree connected preferably with ver-
tices of large degree, and vice versad. Negative correlations
slow degree vertices connected preferably with large degree
verticesd, on the other hand, give rise todisassortative mix-

ing, detected by a decreasingk̄NNskd function.
Analogously to two vertex correlations, correlations im-

plying three vertices can be mesured by means of the prob-
ability Psk8 ,k9 ukd that a vertex of degreek is simultaneously
connected to vertices of degreek8 and k9. Again, the diffi-
culties in directly estimating this conditional probability can
be overcome by analyzing the clustering coefficient. The av-
erage clustering coefficient of the vertices of degreek sthe
clustering spectrumd, c̄skd f28,32g, can be formally computed
as the probability that a vertex of degreek is connected to
vertices of degreek8 andk9, and that those two vertices are at
the same time joined by an edge, averaged over all the pos-
sible values ofk8 andk9 f31g. Thus, we can writec̄skd as a
function of the three vertex correlations as

c̄skd = o
k8,k9

Psk8,k9ukdpk8,k9
k , s4d

where pk8,k9
k is the probability that verticesk8 and k9 are

connected, provided that they have a common neighbork.1

From this expression, the average clustering coefficient can
be computed as

C = o
k

Pskdc̄skd. s5d

For uncorrelated networks, we have thatPncsk8 ,k9 ukd
=Pncsk8 ukdPncsk9 ukd f31g, and pk8,k9

k =sk8−1dsk9−1d / kklN
f33g. Therefore we obtain

c̄ncskd =
skk2l − kkld2

kkl3N
. s6d

That is, c̄ncskd is independent ofk and equal to the average
clustering coefficientC f33g. A functional dependence of
c̄skd on the degree can thus be attributed to the presence of a
structure in the three vertex correlations. In particular, for
scale-free networks it has been observed that in many in-
stances, the clustering spectrum exhibits also a power-law
behaviorc̄skd,k−a. A value ofa close to 1 has been empiri-
cally observed in several natural networks, and analytically
found in some growing network modelsf32,34,35g. These
findings have led to propose the clustering spectrumc̄skd as a
tool to measure hierarchical organization and modularity in
complex networksf32g.

The presence of correlations is thus a very relevant issue
in order to understand and classify complex networks, espe-
cially in view of the important consequences that they can
have on dynamical processes taking place on the topology
defined by the networksf36–38g. While there are quite a few
empirical results for real networks, the situation is not the
same for network models, and therefore there is no consen-
sus regarding the origin of assortative and dissasortative
mixing, and its relation to the power law behavior of the
clustering spectrumc̄skd. In fact, most works devoted to ana-
lytical calculations of correlations in complex network mod-
els have been performed only for particular cases
f31,32,34,35,39,40g. In this respect, a noteworthy develop-
ment is the rate equation formalism proposed by Szabóet al.
in Ref. f34g ssee alsof41gd to computec̄skd in growing net-
work models with preferential attachment. However, to our
knowledge, no such formalism has been developed to deal

with two vertex correlations, as given by thek̄NNskd function.
In this paper we revise the formalism proposed in Ref.

f34g for computing the clustering spectrum in growing net-
work models with preferential attachment. Reconsidering the
mean field rate equation in the continuous degree approxi-
mation for thec̄skd presented inf34g, we are able to provide
a general expression for the boundary condition of this rate
equation, which was neglected in the original treatment and
which can have as a matter of fact relevant effects in the final
solution, as we will show below. Inspired by this result we
also propose a different rate equation for two vertex correla-

tions, as measured by thek̄NNskd function, and work out the
correponding boundary condition. We remark that both equa-
tions are valid in general for the so-called citation networks
f9g, in which neither edge or vertex removal nor edge rewir-
ing is allowed. Also, and due to the fact that the equations
are formulated in the continuous degree approximation, we
expect them to provide accurate results only in the limit of
large k, especially in the case of scale-free networks. The
general formalism is presented in Sec. II. The rate equations

1Note that the probabilitypk8,k9
k can depend on the degreek of the

common vertex.
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obtained can be easily solved for growing networks with
linear preferential attachementsLPAd f24g, as shown in Sec.
III. In particular, we are able to obtain expressions for the
dependence of the correlations on the degreek and the sys-
tem sizeN, for both the dissasortative and assortative re-
gimes of the model, which are in very good agreement with
numerical simulations and previous scaling argumentsf42g.
LPA models generate networks with a vanishing average
clustering coefficientC. In order to assess the effects of a
nonzero clustering, we study in Sec. IV a growing model
presenting a large final clustering coefficientf43g, which we
are able to compute with very good accuracy. The results
obtained are qualitatively similar to those shown by the
Holme-Kim modelf34,44g. The rate equation proposed for
two vertex correlations can be easily generalized to deal with
more involved situations. As an example of its flexibility, we
examine in Sec. V a recently proposed model for the evolu-
tion of weighted complex networksf45g. In this case, we
extend our formalism to compute a function estimating
weighted two vertex correlations, in which the actual
strength of the interactions between neighboring vertices is
taken into account. Our results allow us to discuss the scaling
form of two and three vertex correlation functions, and sig-
nal the possible relations that can be established between
them.

II. RATE EQUATIONS FOR CORRELATIONS
IN GROWING NETWORKS

Let us consider the class of growing network models in
which, at each time step, a new vertex withm edges is added
to the network. For the vertex introduced at timet, each of its
emanating edges is connected to an existing vertex intro-
duced at time s ss, td with a connection probability
Psshkj ,td, which is assumed to depend only on the degrees of
the existing vertices at timet, hkj=hk1std , . . . ,kt−1stdj. Time
runs from 1 toN sthe final network sized, and since for each
new vertexm edges are added, the average degree is fixed
and given bykkl=2m. In the continuousk and t approxima-
tion f42g, the average degree that the vertexs si.e., the vertex
introduced at timesd has at timet st.sd can be computed
from the rate equation

dksstd
dt

= mPsshkj,td, s7d

with the boundary conditionksssd=m sinitially all vertices
havem connectionsd. Fromksstd, the degree distribution can
be obtained as

Psk,td = −
1

t
US ]ksstd

]s
D−1U

s=ssk,td
, s8d

wheressk,td is the solution of the implicit equationk=ksstd.
For this class of networks it is possible to obtain a rate

equation for the clustering spectrum. Following Ref.f34g, we
recall that the clustering coefficientcsstd of vertexs at timet
is defined as the ratio between the number of edges between
the neighbors ofs and its maximum possible value. Then, if

Msstd is the number of connections between the neighbors of
s at time t, we have that

csstd =
2Msstd

ksstdfksstd − 1g
. s9d

During the growth of the network,Msstd can only increase by
the simultaneous addition of an edge tos and one of its
neighbors. Therefore, in the continuousk approximation, we
can write down the following rate equationf34g:

dMsstd
dt

= msm− 1dPsshkj,td o
jPVssd

P jshkj,td, s10d

whereVssd is the set of neighbors of vertexs. In order to
solve this equation we must provide additionally a boundary
condition. To do so, we observe thatMsssd is the number of
triangles created by the introduction of vertexs. Therefore

Msssd =
msm− 1d

2 o
j ,n=1

s

P jshkj,sdPnshkj,sdP j ,n, s11d

that is, it is proportional to the probability thats is connected
to verticesj andn, times the probabilityP j ,n that j andn are
linked, averaged over all verticesj and n existing in the
network at times. The probabilityP j ,n is given by

P j ,n = Qs j − ndmPnshkj, jd + Qsn − jdmP jshkj,nd, s12d

whereQsxd is the Heaviside step function. Solving the equa-
tion for Msstd with the boundary condition Eq.s11d, we can
obtain the clusteringcsstd from Eq.s9d. Then, since in grow-
ing network models in the continuousk approximation the
degree at timet is uniquely determined by the introduction
time s, from csstd we can directly obtain the clustering spec-
trum c̄skd as a function ofk and the largest timet=N.

In the case of the two vertex correlation functionk̄NNskd,
we can proceed along similar lines. Let us defineRsstd as the
sum of the degrees of the neighbors of vertexs, evaluated at
time t. That is,

Rsstd = o
jPVssd

kjstd. s13d

The average degree of the neighbors of vertexs, k̄NNssd, is

then given byk̄NNssd=Rsstd /ksstd. During the growth of the
network,Rsstd can only increase by the adjunction of a new
vertex connected either directly tos, or to a neighbor ofs. In
the first caseRsstd increases by an amountm sthe degree of
the newly linked vertexd, while in the second case it in-
creases by one unit. Therefore, in the continuousk approxi-
mation, we can write down the following rate equation:

dRsstd
dt

= mfmPsshkj,tdg + m o
jPVssd

P jshkj,td. s14d

In order to obtain the boundary condition for this equation,
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we observe that, at times, the new vertexs connects to an
old vertex of degreekjssd with probabilityP jshkj ,sd, and that
this vertex gains a new connection in the process. Therefore,

Rsssd = mo
j=1

s

P jshkj,sdfkjssd + 1g. s15d

From the solution of this rate equation, we can obtaink̄NNssd
and from it the two vertex correlation function by the func-
tional dependence ofs on k and t=N.

We must note that Eqs.s10d–s12d, s14d, ands15d are valid
only for the so-called citation networks, in which neither
edge removal nor rewiringf46g is allowed, since these two
processes can induce nonlocal variations in the conectivity of
the nearest neighbors.

III. LINEAR PREFERENTIAL ATTACHMENT MODELS

As an example of the application of the rate equations
presented in the previous section, we consider the general
LPA model proposed in Ref.f24g, for which the rate equa-
tions for Rsstd and Msstd can be closed and solved analyti-
cally. For general LPA, the connection probability takes the
form

Psshkj,td =
b1ksstd + b2

o j
fb1kjstd + b2g

, s16d

wherebi are real constants. Since, for each new vertex,m
edges are added to the network, the normalization constant in
Eq. s16d takes the formo jfb1kjstd+b2g=s2mb1+b2dt. Thus,
the model depends only on the tuning parametera=b2/b1,
taking values in the intervalaP g−m,`f fsince the minimum
degree ism, a cannot be lower than −m in order forPsshkj ,td
to remain positiveg. Thus, the connection probability for the
LPA model reads

Psshkj,td =
ksstd + a

s2m+ adt
. s17d

Solving the rate equation for the degrees Eq.s7d, we obtain

ksstd = sm+ adS t

s
Db

− a, b =
m

2m+ a
. s18d

Therefore, this model yields networks with a power-law de-
gree distribution of the form

Pskd , k−g, g = 3 +a/m. s19d

For a.0, we obtain a degree exponentg.3, which corre-
sponds to finite degree fluctuations in the thermodynamic
limit. The casea=0 recovers the original BA model withg
=3 f23g. Finally, values −m,a,0 yield scale-free networks
with a tunable degree exponent, in the rangegP g2,3f.

A. Two vertex degree correlations

The rate equation forRsstd takes in this case the form

dRsstd
dt

= m2 ksstd + a

s2m+ adt
+ o

jPVssd
m

kjstd + a

s2m+ adt

= b
sm+ adksstd + am

t
+ b

Rsstd
t

, s20d

where we have used the definition ofRsstd, Eq. s13d. The
general solution of the previous equation is

Rsstd = A0ssdtb + bsm+ ad2S t

s
Db

ln t + a2 s21d

whereA0ssd is given by the boundary conditionRsssd. From
Eq. s15d, we have that

Rsssd = mo
j=1

s
a + sa + 1dkjssd + kj

2ssd
s2m+ ads

= ba + 2mbsa + 1d +
b

s
o
j=1

s

kj
2ssd. s22d

Pluggingkjssd=sm+adss/ jdb−a into Rsssd results in

Rsssd = ms1 − ad + bsm+ ad2s2b−1o
j=1

s

j−2b. s23d

In order to estimate the behavior of the previous expression,
we have to distinguish the different cases corresponding to
the possible values ofb snamely,ad.

(i) −m,a,0 (i.e., b.1/2, g,3). In this case, for large
s, o j=1

s j−2b.zs2bd, wherezsxd is the Riemann zeta function,
and thus, at leading order,

Rsssd . bzs2bdsm+ ad2s2b−1. s24d

The determination of the integration constantA0ssd from Eq.
s21d yields then

Rsstd . bzs2bdsm+ ad2tbsb−1 + bsm+ ad2S t

s
Db

lnS t

s
D ,

s25d

where terms independent oft ands and terms going to zero
in the larget or s limit have been neglected. From the defi-

nition of k̄NNssd, and substitutings as a function ofk and t
=N sthe network final sized in the limit of largek andN we
obtain the following expression for the average degree of the
neighbors of the vertices of degreek:

k̄NNsk,Nd . bzs2bdsm+ ad3−1/bN2b−1k−2+1/b

+ sm+ adlnS k

m+ a
D . s26d

From this expression, we conclude that the LPA witha
,0 yields in the largeN limit networks with disassortative
two vertex correlations, characterized by a power-law decay

k̄NNsk,Nd,N2b−1k−2+1/b. This exponent was previously ob-
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tained by scaling arguments in Ref.f42g. The dependence of

the prefactor onN implies that k̄NNsk,Nd diverges in the
thermodynamic limitN→`, in agreement with the theoreti-
cal arguments provided in Ref.f47g. For finite N, however,
the logarithmic term with constant prefactor can induce cor-
rections to the power-law scaling. Since 2b−1 is at most 1,

the growth ofk̄NNsk,Nd is not very steep withN and these
corrections are observable in numerical simulations, as we
will see below in this section.

(ii) a =0 (i.e., b=1/2, g=3). For this value ofb Eq. s23d
is dominated by a logarithmic divergenceo j=1

s j−1. ln s,
yielding

Rsssd .
m2

2
ln s. s27d

From here, we obtain

Rsstd .
m2

2
Î t

s
ln t, s28d

and finally

k̄NNsk,Nd .
m

2
ln N. s29d

That is, two vertex correlations are independent of the degree
and grow with the system size as lnN, in agreement with the
behavior expected for an uncorrelated scale-free network
with degree exponentg=3, Eq. s3d. Numerical simulations
of the BA modelf28g show actually a very weak dependence

on k in the k̄NNsk,Nd function, compatible nevertheless with
the behavior given by our rate equation approach in the large
k limit. This k dependence, evidentiated at small values of
the degree, cannot be detected within our approach, since it
has been formulated in the continuousk approximation.

(iii) a .0 (i.e., b,1/2, g.3). In this situation, the sum-
mation in Eq. s23d, o j=1

s j−2b.s1−2b / s1−2bd, is divergent,
and thereforeRsssd becomes independent ofs. This leads to

Rsstd . bsm+ ad2S t

s
Db

lnS t

s
D

+ Fms1 − ad +
bsm+ ad2

1 − 2b
− a2GS t

s
Db

, s30d

and finally the dominant behavior for the correlation function
is

k̄NNsk,Nd . sm+ adlnS k

m+ a
D . s31d

In this case,k̄NNsk,Nd is independent of the network size,
and increases logarithmically withk: For g.3, LPA yields
networks with weak assortative mixing.

B. Three vertex correlations

In order to estimate three vertex degree correlations by
means of the clustering spectrumc̄skd, we start from the rate
equation Eq.s10d, which for the LPA model takes the form

dMsstd
dt

= msm− 1d
ksstd + a

s2m+ adt o
jPVssd

kjstd + a

s2m+ adt

= msm− 1d
ksstd + a

s2m+ ad2t2
fRsstd + aksstdg. s32d

The boundary conditionMsssd can be written as

Msssd =
msm− 1d

2 o
j ,n

P jshkj,sdPnshkj,sdP j ,n

=
b2sm− 1dsm+ ad3

2s2m+ ad
s2b−2

3Ho
n=1

s

n−2b o
j=n+1

s

j−1 + o
j=1

s

j−2b o
n=j+1

s

n−1J
=

b2sm− 1dsm+ ad3

2s2m+ ad
s2b−2 3 2o

n=1

s

n−2b o
j=n+1

s

j−1.

s33d

In order to solve Eq.s32d, we approximateksstd andRsstd
by their dominant terms for larget ands, as computed above
for the different possible values ofa.

(i) −m,a,0. In this case we have

ksstd . sm+ adS t

s
Db

, Rsstd . bzs2bdsm+ ad2tbsb−1.

s34d

Introducing this expression into Eq.s32d, we obtain at lead-
ing order

Msstd . b2sm− 1dsm+ ad3zs2bd
s2b − 1ds2m+ ad

st2b−1 − s2b−1ds−1 + Msssd.

s35d

In order to computeMsssd, we observe that the double sum-
mation in Eq.s33d takes the form at larges

S = o
n=1

s

n−2b o
j=n+1

s

j−1 . o
n=1

s

n−2bsln s− ln nd . zs2bdln s,

s36d

sinceon=1
` n−2b ln n is convergent forb.1/2. Thus we ob-

tain

Msstd . b2sm− 1dsm+ ad3zs2bd
s2b − 1ds2m+ ad

st2b−1 − s2b−1ds−1

+ b2sm− 1dsm+ ad3

2m+ a
zs2bds2b−2 ln s, s37d

and from here the expression for the three vertex correlation
function follows:
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c̄sk,Nd .
2b2sm− 1dsm+ ad3−1/bzs2bd

s2b − 1ds2m+ ad
N2b−2k−2+1/b

+
2b2zs2bdsm− 1dsm+ ad5−2/b

2m+ a
sln NdN2b−2k−4+2/b.

s38d

To understand the asymptotic behavior ofc̄sk,Nd, two
limits have to be taken, corresponding to largeN and largek:
s1d At fixed and largeN, the leading behavior at largek
is c̄sk,Nd,N2b−2k−2+1/b; s2d at fixed k& sln Ndb/s2b−1d and
large N, the leading behavior is insteadc̄sk,Nd
,N2b−2 ln Nk−4+2/b. Therefore, in the numerical simulations
we should expect to observe a crossover between these two
scaling regimes.

(ii) a =0. We now have

ksstd . mÎ t

s
, Rsstd .

m2

2
Î t

s
ln t, s39d

which yields

Msstd .
m2sm− 1d

16s
sln2 t − ln2 sd + Msssd. s40d

Since b=1/2, Msssd, as given by Eq.s33d, can be easily
shown to be

Msssd =
m2sm− 1d

16s
ln2 s, s41d

and we obtain

Msstd .
m2sm− 1d

16s
ln2 t, s42d

which results in a clustering coefficient at largeN

c̄sk,Nd .
m− 1

8

ln2 N

N
. s43d

We recover the well-known result for the BA model that
the clustering spectrum is constant, and scaling assln2 Nd /N,
as observed in Ref.f34g. It is worth noting that the compu-
tation of the boundary conditions41d is essential in recover-
ing this result. Interestingly, from Eq.s42d we can also com-
pute the total number of triangles in BA networks as a
function of the network size,TsNd, i.e.,

TsNd .
1

3
E

1

N

MssNdds.
m2sm− 1d

48
ln3 N, s44d

where the factor 1/3 comes from the fact that in the compu-
tation each triangle is seen once by each of its three vertices.
This value can be compared to the exact result obtained in
Ref. f48g, namely,

TsNd .
msm− 1dsm+ 1d

48
ln3 N. s45d

We can see here that, even though our rate equation approach
captures the correct scaling withN, it underestimates the

value of the numerical prefactor, due to the continuous de-
gree approximation.

(iii) a .0. For this range of values ofa we have

ksstd . sm+ adS t

s
Db

, Rsstd . bsm+ ad2S t

s
Db

lnS t

s
D ,

s46d

yielding

Msstd . b2 sm− 1dsm+ ad3

s2m+ ads1 − 2bd
s−2bH− t2b−1 lnS t

s
D

+
s2b−1 − t2b−1

1 − 2b
J + Msssd. s47d

For the evaluation ofMsssd, we observe that the double sum-
mationS defined in Eq.s36d shows now a power-law diver-
genceS.s1−2b / s1−2bd2. Thus we have

Msstd . b2 sm− 1dsm+ ad3

s2m+ ads1 − 2bd
s−2bH− t2b−1 lnS t

s
D

+
2s2b−1 − t2b−1

1 − 2b
J , s48d

yielding a three vertex correlation function

c̄sk,Nd .
4b2sm− 1dsm+ ad3−1/b

s2m+ ads1 − 2bd2 N−1k−2+1/b. s49d

Therefore, fora.0 si.e., b,1/2d, we obtain that the aver-
age clustering of the vertices of degreek is a growing func-
tion of k, scaling asc̄sk,Nd,N−1k−2+1/b. Since by definition
the clustering must be smaller than 1, this growing behavior
must be restricted to degree valuesk&Nb/s1−2bd.

C. Computer simulations

In order to check the analytical results obtained in this
section, we have performed extensive numerical simulations
of the LPA model. Simulations were performed for system
sizes ranging fromN=103 to 106, averaging over 100 net-
work samples for each value ofN and a. We focus in par-
ticular in the rangesa,0 anda.0, which have not been
previously exploredsfor numerical data corresponding to
a=0, the BA model, see Refs.f28,49gd.

In Figs. 1 and 2 we explore the behavior of networks
generated fora,0. We consider first the average degree of

the nearest neighborsk̄NNsk,Nd. Figure 1sad corresponds to
m=4, a=−2, values that yieldb=2/3 andg=2.5, while Fig.
1sbd plots data form=4, a=−3, corresponding tob=4/5 and
g=2.25. The dashed lines represent the power-law behavior
k−2+1/b expected analytically. We observe that, as the size of
the network increases, the data follow the predicted scaling

k̄NNsk,Nd,N2b−1k−2+1/b on larger and larger ranges. Never-
theless, the logarithmic corrections present in Eq.s26d are
clearly visible from the largek deviations shown by the data
smiddle plots in Fig. 1d. The logarithmic correction can, in

fact, be taken into account if one rescalesk̄NNsk,Nd appro-
priately; namely, if we define
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k̄NN
rescsk,Nd = k̄NNsk,Nd − sm+ adlnS k

m+ a
D , s50d

then, from Eq.s26d, we expect

k̄NN
rescsk,NdN1−2b , k−2+1/b. s51d

In the bottom plots of Fig. 1 we draw the rescaled average
degree of the nearest neighbors with logarithmic corrections.
The collapse of the data is indeed surprisingly good, given
the numerous approximations and leading order cancella-
tions made in our calculations. The remaining discrepancy at
very largek is presumably due to the subdominant terms we
have neglected.

In Fig. 2 we represent the clustering spectrumc̄sk,Nd for
the same parameters as before, i.e.,m=4, a=−2 sad and m
=4, a=−3 sbd. The top plots represent the corresponding
nonrescaled raw data. According to the solution provided in
Eq. s38d, for small values ofk an asymptotic scaling is ex-
pected of the formc̄sk,Nd,N2b−2 ln Nk−4+2/b. This behavior
is approximately recovered in the bottom plots in Fig. 2 for

both values ofa, where we can see that the first points in the
graphics for different values ofN collapse onto the same
curve, with approximately the predictedk dependence. For
large values ofk, on the other hand, we expect instead a
scaling c̄sk,Nd,N2b−2k−2+1/b, which is again recovered in
the middle plots of this figure, showing a better collapse in
the intermediate range ofk values. At very largek values,
finally, the neglected logarithmic terms come into play, af-
fecting the scaling of the data. It is important to notice the
important role played by the boundary condition Eq.s11d,
which is responsible for the second term in Eq.s38d, giving
the correct scaling behavior for smallk.

In Fig. 3 we finally explore the average degree of the
nearest neighborssad and the clustering spectrumsbd for the
LPA model witha.0. We focus in particular on the values
m=4 and a=2 stop plotsd, yielding b=2/5, g=3.5; a=5
smiddle plotsd, with b=4/13, g=4.25; anda=10 sbottom
plotsd, which corresponds tob=2/9, g=5.5. For the

k̄NNsk,Nd function our theoretical analysis predicts a function
independent of the network size, and slowlyslogarithmi-
callyd growing with the degree. These predictions are con-

FIG. 1. Average degree for the nearest neighbors of the vertices

of degreek, k̄NNsk,Nd, for the LPA model form=4, with a=−2 sad
and −3 sbd. Symbols correspond to the different system sizesN
=104 ssd, 33104 shd, 105 sLd, and 106 snd. Top plots: Raw data.
Middle plots: Data rescaled by the size prefactorN1−2b. Bottom
plots: Data rescaled by the size prefactor with logarithmic correc-
tions. The dashed lines represent a power-law decay with exponent
−2+1/b.

FIG. 2. Clustering spectrumc̄sk,Nd for the LPA model form
=4, with a=−2 sad and −3sbd. Symbols correspond to the different
system sizesN=104 ssd, N=33104 shd, N=105 sLd, and N
=106 snd. Top plots: Raw data. Middle plots: Data rescaled by the
size prefactorN2−2b, corresponding to largek. Bottom plots: Data
rescaled by the size prefactorN2−2b / lnsNd, corresponding to small
k. The full and dashed lines represent power-law decays with expo-
nent −2+1/b and −4+2/b, respectively.
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firmed in Fig. 3sad. It is noteworthy that the theoretical pre-
diction becomes more accurate for largea: While the
collapse is quite good foraù5, the graphs are a bit scattered
for the smallest value ofa considered. This fact is due to the
slow convergencesasN growsd to the theoretical asymptotic
form for small a. Analogously, the clustering spectrum
shows the predicted scalingc̄sk,Nd,N−1k−2+1/b fFig. 3sbdg.
The dependence on system size is correctly captured by our
analysis for larger values ofa. In this range, however, the
power-law dependence onk seems to depart from the theo-
retical exponent −2+1/b. This apparent departure can be
due to the limited range of degrees for such large values of
the degree exponentsthe degree range decreases for increas-
ing ad, as well as to the subdominant terms neglected in the
asymptotic expression Eq.s49d.

IV. GROWING NETWORKS WITH LARGE CLUSTERING

As we have seen in the previous section, the LPA model
yields a clustering spectrumc̄skd that, even if presenting a
nontrivial scaling, vanishes in the thermodynamic limit, i.e.,

limN→`c̄sk,Nd=0. However, for many complex networks,
such as the internetf2g, we observe a functionc̄skd scaling
with k, together with a finite clustering.

Several models have been proposed which reproduce this
feature. In particular, Dorogovtsev, Mendes, and Samukhin
sDMSd introduced in Ref.f43g a scale-free growing network
with large clustering coefficientC. The model is defined as
follows: At each time step, a vertex is added and connected
to the two extremities of a randomly chosen edge, thus form-
ing a triangle. The resulting network has a power-law degree
distributionPskd,k−3, with kkl=4, and since each new ver-
tex induces the creation of at least one triangle, we expect
this model to generate networks with finite clustering coeffi-
cient. We consider here a generalization of the DMS model,
in which every new node is connected to the extremities of
m/2 randomly chosenedges, wherem is an even number.
The original model corresponds thus tom=2, and this gen-
eralization allows one to tune the average degree, setting it to
kkl=2m.

It is important to notice that this model actually contains
the LPA mechanism in a disguised form. Indeed, the prob-
ability to choose a vertexs is clearly proportional to the
number of edges arriving ats, i.e., to its degreeks. At time t
there aremt edges so thatosks=2mt and the probability to
chooses when choosing one edge isks/ smtd fosks/ smtd=2
since one chooses indeed two verticesg. This process is re-
peatedm/2 times and thus at each time step the probability
to chooses is ks/ s2td.

This shows that another way of formulating the random
choice of an edge is in fact the following: a vertexs is
chosen with the usual preferential attachment probability
ks/ s2mtd, and then one of its neighbors is chosen at random,
i.e., with probability 1/ks.

It is then clear that the rate equation for the degree is
given by

dksstd
dt

=
ksstd
2t

, s52d

leading toksstd=mst /sd1/2 and to a scale-free degree distribu-
tion of the formPskd<2m2k−3.

We are now in position to write down the rate equations
for the network correlations, taking into account that, each
time a vertex is chosen, so is one of its neighbors.

A. Two vertex degree correlations

At each time step,Rsstd can increase either if the vertexs
is chosensand thenRs increases bym+1 because a neighbor
of s is also chosend, or if a neighborj is chosen together with
a neighborl of j , with l Þs sand thenRs increases by 1d.
Therefore, we have that

dRsstd
dt

= sm+ 1d
ksstd
2t

+ o
jPVssd

kjstd
2t

S1 −
1

kjstd
D

=
mksstd

2t
+

Rsstd
2t

. s53d

This is exactly the same equation as for the LPA witha=0,

FIG. 3. Average degree for the nearest neighbors of the vertices

of degreek, k̄NNsk,Nd sad and clustering spectrumc̄sk,Nd sbd for the
LPA with m=4 and positive values ofa. Symbols correspond to the
different system sizesN=104 ssd, N=105 shd, and N=106 sLd.
Top plots:a=2. Middle plots:a=5. Bottom plots:a=10. Data for
c̄sk,Nd have been rescaled by the theoretical size prefactorN. The
dashed lines represent a power-law behavior with exponent −2
+1/b.
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i.e., the BA model. Moreover, the boundary condition for
Rsssd can be written as

Rsssd =
m

2 o
j=1

s
kjssd
2msHkjssd + 1 + o

lPVs jd

1

kjssd
fklssd + 1gJ ,

s54d

where, for each one of them/2 edges chosen bys, the first
term corresponds to the contribution ofj fchosen with prob-
ability kj / s2msdg, and the second term to the contribution of
a neighborl of j schosen with probability 1/kjd. This expres-
sion is easily reduced to

Rsssd =
1

2o
j=1

s
kjssdfkjssd + 1g

s
.

m2

2
ln s. s55d

Once again we obtain the same result as for the LPA with

a=0. The conclusion is that thek̄NNsk,Nd function for the
generalized DMS model is given by Eq.s29d: the two vertex
correlations are independent of the degree and grow with the
network size as lnN, in the same fashion as in the BA model.

B. Three vertex correlations

In order to write down the rate equation forMsstd, we
have to take into account that, at each time step,m/2 tri-
angles are formed by the choice ofm/2 edges, and that,
moreover, additional triangles may be formed form.2 by
choosing two different edges with a common vertex. At each
time step, the increase inMsstd is thus given by two terms.
The first one comes from choosing the vertexs with prob-
ability ksstd / s2td. In this case,Ms increases by 1, since one of
the neighbors ofs is also chosen. The second contribution
comes from the following situation: one of the edges chosen
is s− l, and another one isj − l8, with j PVssd, j Þ l, and l8
Þs.

The resulting rate equation reads

dMsstd
dt

=
ksstd
2t

+
m

2
Sm

2
− 1Dksstd

mt
o

jPVssd

kjstd
mt

S1 −
1

ksstd
D

=
ksstd
2t

+
m− 2

4mt2
fksstd − 1gRsstd. s56d

We useks.mÎt /s andRs.m2 ln tÎt /s/2 to obtain

dMsstd
dt

.
m

2Îts
+

m2sm− 2dln t

8st
, s57d

whose solution reads

Msstd . mSÎ t

s
− 1D +

m2sm− 2d
16s

sln2 t − ln2 sd + Msssd.

s58d

The boundary condition is again given by two contribu-
tions. First,m/2 triangles are created by attachings to m/2
edges. The second contribution is given by

m

2
Sm

2
− 1D1

2o
j=1

s

o
lPVs jd

kjssd
ms

S1 −
1

kjssd
Dklssd

ms
, s59d

i.e., the sum over all verticesj of the probability that, among
the m/2 edges chosen by the new nodes, one hasj for
extremity, and another one has a neighborl of j for extremity
fthe factor 1/2 is due to the double counting of the linkss j , ld
and sl , jdg. This yields

Msssd =
m

2
+

m− 2

8ms2 o
j=1

s

Rjssdfkjssd − 1g .
m

2
+

m2sm− 2dln2 s

16s

s60d

and finally

Msstd . mÎ t

s
−

m

2
+

m2sm− 2d
16s

ln2 t. s61d

The clustering spectrum can therefore be written as

c̄sk,Nd .
2k − m

ksk − 1d
+

m− 2

8N
ln2 N. s62d

The clustering spectrum is now finite in the infinite size
limit,

c̄skd = lim
N→`

c̄sk,Nd .
2k − m

ksk − 1d
. s63d

It is interesting to see that, for the original model withm
=2, the finite size corrections actually vanish and we obtain
the resultc̄sk,Nd=2/k, independent ofN. This scaling is also
similar to that obtained for the Holme-Kim model inf34g.
The knowledge of the exact form of the degree distribution
for m=2, Pskd=12/fksk+1dsk+2dg f43g allows us to obtain
the average clustering coefficientCsm=2d=2p2−19
<0.739. More generally, for largem, approximatingPskd by
2m2/k3 and sums by integrals yields

Csmd =E
m

`

Pskdc̄skddk. 2m2 − 3m− 4/3

+ 2m2s2 − mdlnS m

m− 1
D . s64d

C. Computer simulations

We have performed extensive numerical simulations of
the generalized DMS model studied in this section. We focus

on the clustering spectrumc̄sk,Nd since the results fork̄NNskd
are expected to be equal to the case of the BA model. Figure
4sad shows the excellent agreement between the predicted
behavior Eq.s62d and the numerical data for various values
of m and sizes ranging fromN=104 to 106. As expected, no
finite size corrections are present form=2, while they are
correctly described by the analytical approach for largerm.
Moreover, the prediction for the average clustering coeffi-
cient Csmd, Eq. s64d, is also shown to be in excellent agree-
ment with numerical data, Fig. 4sbd.
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V. WEIGHTED GROWING NETWORKS

In the previous sections we have applied the rate equation
formalism to analyze two and three vertex correlations in
standard models with either vanishing or constant clustering
coefficient. The formalism for the two vertex correlations,
however, is not limited to these particular cases, and can be
easily extended to analyze more complex growing network
models. As an example, in this section we will consider a
recently proposed growing weighted network modelf45g.
Weighted networksf50g are a natural generalization of
graphs in which a real quantity is assigned to each edge,
representing the importance or weightwij of the interaction
between the verticesi and j . Recently f51g, it has been
pointed out that real weighted networks present a complex
architecture, characterized by broad distributions of weights,
as well as nontrivial correlations between the values of the
weights and the topological structure of the network.

Motivated by these findings, Ref.f45g proposed a dy-
namic growing weighted network model, in which new
edges are attached to old vertices with a connection probabil-
ity depending on the strength, or total weight, of the vertex.
In order to define the model, let us consider a weighted net-
work characterized by the elementswij defining the weight

assigned to the edge connecting verticesi and j . We assume
the elementswij to be symmetric, that is,wij =wji . Each ver-
tex i is characterized by both its degreeki and its strengthsi,
defined as

si = o
jPVsid

wij . s65d

For nonweighted networks, in whichwij =1, we obviously
recoversi =ki. The model proposed in Ref.f45g considers a
growing network in which at each time step, a new vertex is
added to the system and connected withm edges to older
vertices. The probability that the new vertext is connected to
s ss, td is given by the connection probability

Psshsj,td =
ssstd

o j
s jstd

, s66d

that is, linearly proportional to the strength of the old vertex
s. Each new edge carries an initial weightw0=1. Addition-
ally, there is a dynamic rearrangement of the weights belong-
ing to the edges of the receiving vertex: When the vertexs
receives a new connection, the weight of its edges is in-
creased by an amount

wsj → wsj + d
wsj

ss
, j P Vssd. s67d

This rule implies that, for each new vertex added, the total
strength of the network is increased by an amount 2m
+2md; therefore, the normalization constant in Eq.s66d is
o js jstd=2ms1+ddt. It can be shown, within the continuousk
approximationf45g, that this model generates scale-free net-
works, characterized by the quantities

ssstd = mS t

s
Db

, ksstd =
ssstd + 2md

2d + 1
, Pskd , k−g,

s68d

with exponents

b =
2d + 1

2d + 2
, g =

4d + 3

2d + 1
. s69d

Therefore, ford.0, this model yields power-law degree dis-
tributions with degree exponentgP g2,3f andb.1/2. The
cased=0 recovers the BA model.

It is easy to see that, at the level of the mean field rate
equations in the continuousk approximation, the weighted
growing network model described above can be mapped into
a growing network with LPA and negative parametera given
by

a = −
2md

2d + 1
. s70d

Therefore, we expect to observe the two and three vertex
correlation functions

FIG. 4. sad Clustering spectrumc̄sk,Nd for the generalized DMS
model. The top plot corresponds to a system sizeN=104; the bot-
tom plot is for N=106. Symbols correspond to different values of
the average degreem=2 ssd, 4 shd, and 8sLd. The dashed lines
are the theoretical predictions given by Eq.s62d. sbd Average clus-
tering coefficientCsmd as a function ofm, for networks of sizeN
=105. The full line represents the theoretical prediction Eq.s64d.
The dashed line marks the theoretical value form=2, Cs2d=2p2

−19.

A. BARRAT AND R. PASTOR-SATORRAS PHYSICAL REVIEW E71, 036127s2005d

036127-10



k̄NNsk,Nd .
mzs2bd
2s1 + ddS m

2d + 1
D2−1/b

N2b−1k−2+1/b

+
m

2d + 1
lnS2d + 1

m
kD , s71d

c̄sk,Nd .
sm− 1ds2d + 1d2

4dsd + 1d2 S m

2d + 1
D2−1/b

N2b−2k−2+1/b

+ zs2bd
sm− 1ds2d + 1d2

4sd + 1d3

3S m

2d + 1
D4−2/b

sln NdN2b−2k−4+1/b. s72d

A. Weighted two vertex correlations

The definition of thek̄NNskd function we have computed
above completely neglects the effect of the weights. There-
fore, it provides a biased view of real correlations in the
systemsfor example, two neighbors with the same degree
but widely different weights give the same contributiond. In
order to take into account the effect of the weights associated
with the edges, a different correlation measure has been pro-
posed, the weighted average degree of the nearest neighbors

k̄NN
w skd f51g, defined as follows:

k̄NN
w ssd =

1

ssstd
o

jPVssd
wsjstdkjstd. s73d

This definition implies thatk̄NN
w ssd. k̄NNssd if the edges with

largest weight point to the neighbors with largest degree,

while k̄NN
w ssd, k̄NNssd in the opposite case. Therefore,k̄NN

w ssd
measures the effective affinity to connect with large or small
degee neighbors, according to the magnitude of the interac-
tion weight. The weighted average degree of the nearest

neighborsk̄NN
w skd, is defined as the average ofk̄NN

w ssd for all
the vertices with the same degreek.

We can study analytically the weighted two vertex corre-
lations by seeking a rate equation for the quantity

Qsstd = o
jPVssd

wsjstdkjstd. s74d

According to the rules defining the model, at each time step
Qsstd can increase its value by two mechanisms:s1d If a new
vertex is directly attached tos, Qsstd increases by an amount
m+dQs/ss; s2d if a new vertex is attached to a neighborj of
s, then Qsstd increases bywsj+dwsj/s j +dwsjkj /s j. There-
fore, the rate equation satisfied byQsstd is

dQsstd
dt

= mPsshsj,tdSm+
d

ssstd
QsstdD + o

jPVssd
mP jshsj,td

3Swsj + d
wsj

s jstd
+ dwsj

kjstd
s jstd

D , s75d

which, in terms ofssstd andQsstd, yields

dQsstd
dt

= Sb +
d

1 + d
DQsstd

t
+

m+ d − 2md

2s1 + dd
ssstd

t
. s76d

Inserting the value ofssstd given by Eq.s68d, the general
solution of this equation is

Qsstd = A0ssdtb+d/s1+dd −
m

2d
sm+ d − 2mddS t

s
Db

. s77d

Since all new edges have an initial weightw0=1, the initial
condition for Qsstd coincides with that ofRsstd. Solving for
A0ssd from Eq.s24d, substituting for the corresponding value
of a given by Eq.s70d, we finally obtain in the largek andN
limit

k̄NN
w sk,Nd .

mzs2bd
2s1 + dds2d + 1d

N2b−1. s78d

That is, in this model the weighted average degree of the
nearest neighbors is independent ofk, signaling the absence
of two vertex weighted correlations, as indeed found numeri-
cally in Ref. f52g. There is, however, a scaling with the sys-
tem size, given by the factorN2b−1, which is the same as that
found for the nonweighted correlations for the same value of
g.

B. Computer simulations

We have performed numerical simulations of the
weighted growing network model described in Ref.f45g, for
sizes ranging fromN=103 to 105, focusing on the behavior
of the average degree of the nearest neighbors, for both its
nonweighted and weighted versions. In Fig. 5 we plot the

average degree of the nearest neighborsk̄NNsk,Nd for m=2
and d=2 sad which corresponds to a network withb=5/6,
g=2.20, andd=5 sbd, that yieldsb=11/12,g=2.09. As ex-
pected from the analytical analysis performed above, the ob-
tained scaling is analogous to the LPA model: the numerical

data follow the predicted formk̄NNsk,Nd,N2b−1k−2+1/b. The
bottom plots highlight the presence of the logarithmic cor-
rection of Eq.s71d, by plotting the rescaled function

k̄NN
rescsk,Nd = k̄NNsk,Nd −

m

2d + 1
lnS2d + 1

m
D . s79d

In this case, it is noticeable that the rescaledk̄NN
rescsk,Nd func-

tion with logarithmic corrections yields a better data collapse
than that shown by the LPA model. Even though both models
are identical at the mean field level, the existing microscopic
differences seem to yield smaller subleading corrections for
the weighted growing network model.

For this same set of parameters, we have also evaluated
the weighted average degree of the nearest neighbors,

k̄NN
w sk,Nd, shown in the middle plot in Fig. 5sad sfilled sym-

bolsd. We observe that thek̄NN
w sk,Nd is indeed, as expected,

independent ofk, and scales with the system size with the
predicted factorN2b−1.
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VI. CONCLUSIONS

A complete theoretical characterization of a growing net-
work model should imply not only the estimation of the cor-
responding degree distribution, but also an analytical study
of the functional form of the correlations between the de-
grees of neighboring vertices. Capitalizing on the work of
Szabóet al. f34,41g, in this paper we have provided a for-
malism to compute two vertex correlations, expressed by
means of the average degree of the nearest neighbors of the

vertices of degreek, k̄NNskd, valid for growing network mod-
els generated by means of the preferential attachment mecha-
nism and belonging to the class of so-called citation net-
works. The formalism is based on a rate equation in the
continuousk approximation, together with the appropriate
boundary condition, that can be easily solved in the case in
which the preferential attachment is linear in the degree. Ad-
ditionally, we have presented a more complete description of
the rate equation determining the clustering spectrumc̄skd,

by discussing the effects of boundary conditions. Applying
this framework to several growing network models, we have

obtained asymptotic expressions for the functionsk̄NNsk,Nd
and c̄sk,Nd, showing both the degree dependence and the
scaling with the system size, due to finite size effects. As a
general result, we conclude that networks generated by LPA
with degree exponentg,3 exhibit the scaling behavior

k̄NNsk,Nd , N2b−1k−2+1/b, s80d

previously obtained by means of scaling argumentsf42g,
which is the signature of disassortativesnegatived two vertex
correlations. We have also been able to identify the presence
of logarithmic corrections in models with LPA, which clearly
appear in computer simulations of the model. For this LPA
model, we also observe the presence of small assortative
correlations for degree exponentsg.3, characterized by a

logarithmic growth of thek̄NNsk,Nd function, which is oth-
erwise independent of the network size. The situation is more
complex in what concerns the clustering spectrumc̄sk,Nd.
For g.3, we observe the presence of a crossover between
two power-law decays in the degree,c̄skd,k−a, with a=
−4+2/b for k& slnNdb/s2b−1d, and a=−2+1/b in the
asymptotic limit, while forg.3 we obtain an increasing
c̄sk,Nd function, limited by an upper degree cutoff.

From these results we can conclude that the valuea.1
observed in the literaturef32,34g is not a generic feature of
all scale-free networksf41g. However, we notice that LPA
yields networks with a vanishing clustering coefficient. In
order to assess the possible effects of this factor, we have
considered the DMS modelf43g, which generates networks
with a large value ofC, as observed in real networks. In this
case, we obtain a lack of two vertex correlations, while the
clustering spectrum scales asc̄skd,k−1. An analogous result
is obtained for the similar Holme-Kim modelf34,44g.

As a final point, we have shown the flexibility of the rate
equation approach to compute two vertex correlations by ap-
plying it to a recently proposed weighted growing network
model, in which edges are further characterized by a distri-
bution of weights that is dynamically coupled to the evolving
topology of the network. For this model, we are able to ex-
tend our formalism to deal with weighted two vertex corre-
lations, which measure the effect of the strength of the inter-
actions between neighboring vertices.

The very good agreement shown between our analytical
estimates and numerical simulations suggest that the method
proposed in this paper to compute two vertex correlations is
in general valid to characterize growing citation network
models. An obvious improvement would be to extend it to
deal with models in which vertex and edge removal, and
edge rewiring, are allowed. This inclusion, however, would
probably lead to quite complex nonlocal rate equation,
whose solution would be much harder to tackle.
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line, in agreement with the analytical prediction Eq.s78d.
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