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Rate equation approach for correlations in growing network models

Alain Barrat and Romualdo Pastor-Satorfas
Y aboratoire de Physique Théorique (UMR du CNRS 8627), Batiment 210, Université de Paris-Sud 91405 Orsay, France
2Departament de Fisica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain
(Received 25 October 2004; published 22 March 2005

We propose a rate equation approach to compute two vertex correlations in scale-free growing network
models based on the preferential attachment mechanism. The formalism, based on previous work ef Szab6
al. [Phys. Rev. E67, 056102(2002] for the clustering spectrum, measuring three vertex correlations, is based
on a rate equation in the continuous degree and time approximation for the average degree of the nearest
neighbors of vertices of degréewith an appropriate boundary condition. We study the properties of both two
and three vertex correlations for linear preferential attachment models, and also for a model yielding a large
clustering coefficient. The expressions obtained are checked by means of extensive numerical simulations. The
rate equation proposed can be generalized to more sophisticated growing network models, and also extended to
deal with related correlation measures. As an example, we consider the case of a recently proposed model of
weighted networks, for which we are able to compute a weighted two vertex correlation function, taking into
account the strength of the interactions between connected vertices.

DOI: 10.1103/PhysRevE.71.036127 PACS nun®)er89.75.Hc, 87.23.Ge, 05.70.Ln

I. INTRODUCTION plies a large connectivity heterogeneity, at the basis of the

M twral and q | ¢ b eculiar behavior shown by dynamical processes taking
any natural and manmade compiéx SySlems can DRjace on top of these networks, such as the resilience to

fruitfully represented and stl_Jd|ed in terms of networks orr;ndom damag@l2-14, the spreading of infectious agents
grgphs[l], in which the vertices stqnd for the elementary[15_1a' or diffusion-annihilation process¢s9,20.
units that compose the system, while the edges picture the prom a theoretical point of view, the empirical research
interactions or relations between pairs of units. This topohas inspired the proposal of new network models, aimed at
logical representation has found many applications in field$eproducing and explaining the properties exhibited by com-
as diverse as the interne?], the worldwide welj3], biologi-  plex networks. In this respect, many efforts have been de-
cal interacting networkp4—6], or social systemg7], leading  voted to develop models capable of accounting for a scale-
to the development of a new branch of statistical mechanicdree degree distribution. Classical network modeling was
the modern theory of complex networf&,9]. previously based on the Erdds-Renyi random graph model
The empirical study of real complex networks, promoted[21,22, which is a static modeli.e., defined for a fixed
by the recent accessibility to computers powerful enough tewumber of verticed) yielding small-world networks with a
deal with very large databases, has uncovered the presencefisson degree distribution. A change of perspective in net-
some typical characteristics. The three most relevant of theséork modeling took place after the introduction of the pref-
are the following.(i) The small-world property10], defined ~ €rential attachment paradigm first proposed by Barabasi and
by an average shortest path length—average distance blPert (BA) [23]. The insight behind this concept is the re-
tween any pair of vertices—increasing very slowllygarith- alization of two facts. First, most _complex ne’gworks are the
mically or more slowly[11]) with the network sizeN. (ii) _resylt of a growth process, in which new vertices are added
The presence of a large transitivify], which implies that in time to the system. Second, new_edges are not placed at
two neighbors of a given vertex are also connected to eac ndom, but tend to connect to vertices 'that aIlready have a
other with large probability. Transitivity can be quantitatively arge degree. It turns out that these two ingredients are able

; " to reproduce scale-free degree distributions with a tunable
measured by means of the clustering coefficgraf vertex ;
i [10], defined as the ratio between the number of edges degree exponerj23,24. Moreover, it has been shown that

existing betwen thé neighbors of, and its maximum pos- not all sorts of preferential attachment are able to generate a
sible value, i.e.,ci:IZmi/[ki(ki—l)]. ’The average clustering power-law degree distribution, but only those in which new
coefficient, defined a€=3,c /N, usually takes quite large edges attach to vertices with a probability strictly linear in

values in real complex network§ii) A scale-free behavior g:jeclrr] gzgtrﬁee‘[ig]' iarl]nd nzgz'g(%miiw allitcei'zlnag\é?inzeac?iiggrms’
for the degree distributioR(k) [8,9], defined as the probabil- pying . Implicitly

. . . preferential attachment dynamics.
ity that a vertex is connected toother verticeghas degree While a proper characterization and understanding of the
k), that shows a power-law behavior

origin of the scale-free degree distribution displayed by most
P(K) ~ K7, (1) real comple>_< networks_ is a fundamental task,_it has b_een

recently realized that this property does not provide a suffient

where y is a characteristic degree exponent, usually in thecharacterization of natural networks. In fact, these systems
range < y<<3. A major role is especially played by the seem to exhibit also ubiquitous degree correlations, which
scale-free nature of many real complex networks, which imtranslate into the fact that the degrees of the vertices at the
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end points of any given edge are not independ@it-30. c=S PKick). (5)
Two vertex degree correlation can be conveniently measured K

by means of the conditional probabiliB(k’|k) that a vertex o
of degreek is connected to a vertex of degrkle For uncor-  FOr uncorrelated networks, we have thahq(k’,K"|k)
related networks, in which this conditional probability is in- =Pndk'[KPa(K'[k) [31], and p, ,,=(K =1)(K"=1)/{KN
dependent ok, it can be estimated as the probability that any[33]. Therefore we obtain

edge end points to a vertex of degri€e which is simply ((K?) = (K))2
given by P, (k' |k)=k'P(k")/{k) [31]. The empirical evalua- Crdk) = ——5——
tion of P(k’|k) in real networks is usually a cumbersome (k°N
task, restricted by finite size data, yielding noisy results. Forrhat is, c,(k) is independent ok and equal to the average
this reason, it is more practical to analyze instead the averagqustering coefficientC [33]. A functional dependence of
degree of the nearest neighbors of the vertices of delgree (k) on the degree can thus be attributed to the presence of a

(6)

which is formally defined af27] structure in the three vertex correlations. In particular, for
. scale-free networks it has been observed that in many in-
knn(K) :E K'P(K'|K). (2) stances,_the clustering spectrum exhibits also a power-law
K’ behaviorc(k) ~k™@. A value of « close to 1 has been empiri-

cally observed in several natural networks, and analytically
For uncorrelated networks, in whicR(k’|k) does not de- found in some growing network modef82,34,33. These

pend onk, we have findings have led to propose the clustering specictkhas a
tool to measure hierarchical organization and modularity in
= (K3 complex network$32].
n(K) = w0’ ) The presence of correlations is thus a very relevant issue

in order to understand and classify complex networks, espe-
_ — ) ) . cially in view of the important consequences that they can
independent ok. Thus, akNN(k) function with an explicit  have on dynamical processes taking place on the topology
dependence on the degree signals the presence of two vertggfined by the networki86—3§. While there are quite a few
degree correlations in the network. Whigy(k) is an in-  empirical results for real networks, the situation is not the
creasing function ok, the network showassortative mixing same for network models, and therefore there is no consen-
[29] (vertices of large degree connected preferably with versus regarding the origin of assortative and dissasortative
tices of large degree, and vice vershlegative correlations mixing, and its relation to the power law behavior of the
(low degree vertices connected preferably with large degreelustering spectrura(k). In fact, most works devoted to ana-
verticeg, on the other hand, give rise thisassortative mix- lytical calculations of correlations in complex network mod-
ing, detected by a decreasiEgN(k) function. els have been perfo_rmed only for particular cases
Analogously to two vertex correlations, correlations im-[31,32,34,35,39,40 In this respect, a noteworthy develop-
plying three vertices can be mesured by means of the prognent is the rate equation formalism proposed by Sziz.
ability P(k’,k”|K) that a vertex of degreleis simultaneously N Ref.[34] (see alsd41]) to computec(k) in growing net-
connected to vertices of degrée andk”. Again, the diffi- work models with preferenti_al attachment. However, to our
culties in directly estimating this conditional probability can knowledge, no such formalism has been developed to deal
be overcome by analyzing the clustering coefficient. The avwith two vertex correlations, as given by tkgy(k) function.
erage clustering coefficient of the vertices of degkeghe In this paper we revise the formalism proposed in Ref.
clustering spectrumc(k) [28,32, can be formally computed [34] for computing the clustering spectrum in growing net-
as the probability that a vertex of degrkeés connected to work models with preferential attachment. Reconsidering the
vertices of degrek’ andk”, and that those two vertices are at mean field rate equation in the continuous degree approxi-
the same time joined by an edge, averaged over all the posaation for thec(k) presented ii34], we are able to provide
sible values ok’ andk” [31]. Thus, we can write(k) as a a general expression for the boundary condition of this rate

function of the three vertex correlations as equation, which was neglected in the original treatment and
which can have as a matter of fact relevant effects in the final
- ) . i _ . :
= P KPR, 0. (4) s?lutlon, as we (;N#| show below. Ir)spl;ed by this result wle
K : also propose a different rate equation for two vertex correla-

tions, as measured by thgy(k) function, and work out the
where pt, . is the probability that vertice&’ and k" are correponding boundary condition. We remark that both equa-
’ tions are valid in general for the so-called citation networks
G)], in which neither edge or vertex removal nor edge rewir-
ing is allowed. Also, and due to the fact that the equations
are formulated in the continuous degree approximation, we
- expect them to provide accurate results only in the limit of
Note that the probabilit;pt,vk,, can depend on the degre®f the  large k, especially in the case of scale-free networks. The
common vertex. general formalism is presented in Sec. Il. The rate equations

connected, provided that they have a common neiglkt}or
From this expression, the average clustering coefficient ca
be computed as
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obtained can be easily solved for growing networks withM(t) is the number of connections between the neighbors of
linear preferential attacheme(itPA) [24], as shown in Sec. s at timet, we have that

[ll. In particular, we are able to obtain expressions for the

dependence of the correlations on the dedread the sys- 2M(t)

tem sizeN, for both the dissasortative and assortative re- c(t) = ko(D[ky(t) - 1] ©)
gimes of the model, which are in very good agreement with s

numerical simulations and previous scaling argumé#®.  During the growth of the networli((t) can only increase by
LPA models generate networks with a vanishing averagghe simultaneous addition of an edge gcand one of its
clustering coefficienC. In order to assess the effects of a nejghbors. Therefore, in the continuduspproximation, we

nonzero clustering, we study in Sec. IV a growing modelcan write down the following rate equati§84]:
presenting a large final clustering coeffici¢A8], which we

are able to compute with very good accuracy. The results dMg(t)
obtained are qualitatively similar to those shown by the at :m(m—l)HS({k},t).E I({k}y, (10
Holme-Kim model[34,44. The rate equation proposed for Jevs)

two vertex correlations can be easily generalized to deal Witk}vhere W(s) is the set of neighbors of vertex In order to

more involved situations. As an example of its flexibility, we solve this equation we must brovide additionally a boundar
examine in Sec. V a recently proposed model for the evolu: q b y y

tion of weighted complex networki45]. In this case, we tcr?nr?ltllon. 'rl'o ?Odsg ’ \;\r/]e ?:tsre;ve ;Hﬁg(?)JeriTﬂuT?e: of
extend our formalism to compute a function estimating angies created by the Introduction of ve erefore

weighted two vertex correlations, in which the actual mm=-1) &

strength of the interactions between neighboring vertices is - _ ) )

taken into account. Our results allow us to discuss the scaling Ms(s) = 2 2, Ti({k: ({9, (1D

form of two and three vertex correlation functions, and sig-

nal the possible relations that can be established betweenhat is, it is proportional to the probability thais connected

them. to vertices] andn, times the probability]; , thatj andn are
linked, averaged over all verticgsand n existing in the
network at times. The probabilityll; , is given by

j.n=1

Il. RATE EQUATIONS FOR CORRELATIONS
IN GROWING NETWORKS I , = O —nmll,({k},j) + ©(n - j)mIL;({k},n), (12)

Let us consider the class of growing network models inwhere®(x) is the Heaviside step function. Solving the equa-
which, at each time step, a new vertex witredges is added  tjon for M(t) with the boundary condition Eq11), we can
to the network. For the vertex introduced at timeach of its  gptain the clustering(t) from Eq.(9). Then, since in grow-
emanating edges is connected to an existing vertex introng network models in the continuodsapproximation the
duced at times (s<t) with a connection probability gegree at time is uniquely determined by the introduction
II({k}, 1), which is assumed to depend only on the degrees ofime s, from c(t) we can directly obtain the clustering spec-

the existing vertices at timg {k}={k;(t), ... k_1(t)}. Time trum c(k) as a function ok and the largest time=N.
runs from 1 toN (the final network sizg and since for each —

new vertexm edges are added, the average degree is fixed In the case of the tW(.) v_ertgx correlation functikg(k),
and given by(k)=2m. In the continuougk andt approxima- we can proceed along similar lines. Let us defiy¢t) as the

tion [42], the average degree that the versdie., the vertex sum of the degrees of the neighbors of vergervaluated at

introduced at times) has at timet (t>s) can be computed time t. That is,
from the rate equation
f RMO= 2 k). (19
dig(t jeve

? = mHS({k}vt)v (7) o
The average gegree of the neighbors of vergekyy(s), is

with the bound_ary conditiorkg(s)=m (initiallyl aII_ ve_rtices then given bykyy(s)=Ry(t)/k(t). During the growth of the
havem qonnectlon)s Fromk(t), the degree distribution can network, Ry(t) can only increase by the adjunction of a new
be obtained as vertex connected either directly $por to a neighbor o§. In
1 [ oky(t)\? the first casg?s(t) increases py an amount (the degreg Qf

P(k,t)=—¥ s , (8)  the newly linked vertex while in the second case it in-
s=s(kd) creases by one unit. Therefore, in the continuk@gpproxi-
wheres(k,t) is the solution of the implicit equatiok=ky(t). ~ mation, we can write down the following rate equation:

For this class of networks it is possible to obtain a rate

equation for the clustering spectrum. Following R&#], we dR(t) =mmiL({k,0]+m S 1K), (14)
recall that the clustering coefficieni(t) of vertexs at timet dt S eV e
is defined as the ratio between the number of edges between
the neighbors of and its maximum possible value. Then, if In order to obtain the boundary condition for this equation,
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we observe that, at timg the new vertexs connects to an A. Two vertex degree correlations
old vertex of degre;(s) with probability IT;({k},s), and that

; s St The rate equation foR(t) takes in this case the form
this vertex gains a new connection in the process. Therefore,

dR(t) k() +a N ki(t) +a
> dt (2 , 2
RS = m; 1K, 9Tk (9 + 11, a9 t @m+at 55y (2m+ajt
j=1 _ (m+ a)kts(t) +am+ﬁRst(t)' (20)

From the solution of this rate equation, we can obiqjg(s)
and from it the two vertex correlation function by the func-
tional dependence af on k andt=N.

We must note that Eq$10—(12), (14), and(15) are valid t\B
only for the so-called citation networks, in which neither Ry(t) = Ag(s)tP + B(m + a)2<—> Int+a? (21
edge removal nor rewirinf46] is allowed, since these two s
processes can induce nonlocal variations in the conectivity afvhere Ay(s) is given by the boundary conditidR(s). From

where we have used the definition Bf(t), Eq. (13). The
general solution of the previous equation is

the nearest neighbors. Eg. (15), we have that
> a+(a+ 1ki(s) + K(s)
ll. LINEAR PREFERENTIAL ATTACHMENT MODELS Ry(s) =m>,
i1 (2m+a)s

As an example of the application of the rate equations
presented in the previous section, we consider the general
LPA model proposed in Ref24], for which the rate equa-
tions for Ry(t) and M4(t) can be closed and solved analyti- ] . . )
cally. For general LPA, the connection probability takes theP!uggingk;(s)=(m+a)(s/j)’~a into Ry(s) results in
form

= a+2mpa+ 1) + 521 KX(s). (22)
i=

S
R(s)=m(1-a)+Bm+a)’s# 1> 28 (29

biks(t) + b, (16) j=1
2]. [bk;(t) + bz]’ In order to estimate the behavior of the previous expression,
we have to distinguish the different cases corresponding to

whereb; are real constants. Since, for each new vertax, the.po_ssible V%'“fas B (nf/rgely,a)é In thi for |
edges are added to the network, the normalization constant in ('S) _$§a< (ie, B> ’_7< )- _nt IS case, for large
Eq. (16) takes the form;[byk;(t)+b,]=(2mb; +by)t. Thus, S, 2L zg(Z,B)., where/(x) is the Riemann zeta function,
the model depends only on the tuning parameteb,/b,, ~ 2nd thus, at leading order,

taking v_alues in the interval e ]—m,w[ [since the minimum R(S) = BL(2B)(m+ a)2h L. (24)
degree isn, a cannot be lower thanm in order forlI({k},t) o ) _

to remain positivg Thus, the connection probability for the The determination of the integration constagts) from Eq.
LPA model reads (21) yields then

H({k},t) =

B
Ri(D) = BL(2B)(m+ 2P+ p(m+ a)z(:i) m(i),
(25

Solving the rate equation for the degrees Ef}, we obtain  where terms independent bands and terms going to zero
in the larget or s limit have been neglected. From the defi-
_ t\# __m nition of kyn(S), and substitutings as a function ok andt
ki®) = (m+ a)(s> a p= 2m+a’ (18 =N (the network final sizein the limit of largek andN we
obtain the following expression for the average degree of the
Therefore, this model yields networks with a power-law de-neighbors of the vertices of degrée
gree distribution of the form

ky(t) +a

Mkt = (2m+a)t’

17)

kni(k,N) = BE(28) (m+ a)* VAN 12118
P(k) ~ k™7, =3+a/m. 19 k

(k) Y (19 +(m+a)|n(m). 26)
Fora>0, we obtain a degree exponept-3, which corre- . . .
sponds to finite degree fluctuations in the thermodynamic From this expression, we conclude that the LPA wath
limit. The casea=0 recovers the original BA model wity <0 yields in the largeN limit networks with disassortative
=3[23]. Finally, values m<a<0 yield scale-free networks two vertex correlations, characterized by a power-law decay
with a tunable degree exponent, in the range]2,3. knn(k, N) ~ N2A-1~2+16 This exponent was previously ob-
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tained by scaling arguments in Rg42]. The dependence of dM(t) k(t) +a ki(t) + a
the prefactor onN implies thatkyy(k,N) diverges in the dt =m(m-1) (2m+a)t; Sy (2m+alt
thermodynamic limitN— o, in agreement with the theoreti-

cal arguments provided in Rg#47]. For finite N, however, k(t) +

the logarithmic term with constant prefactor can induce cor- = m(m- 1)( +a)

rections to the power-law scaling. Sincg-21 is at most 1,
the growth ofkyy(k,N) is not very steep witiN and these The boundary conditioM(s) can be written as
corrections are observable in numerical simulations, as we

SR +ak(]. (32

will see below in this section. _m(m-1)
(i) a=0 (i.e, B=1/2, y=3). For this value of3 Eq.(23) M{(s)=——— > 1({Kk, 9)TT({k}, 91T,
is dominated by a logarithmic divergencg®,j*~Ins, o
yielding _ BA(m-1)(m+a)® 52
2 2(2m+a)
Rs(s) = ? Ins. (27) s s s s
2nEY e XY ot
From here, we obtain n=1 j=n+1 =1 n=j+l
m? \ﬁ AAm-1)(m+a)°
t)=-—1+/-Int, 28 = P2x 2>, n%#
RO=7\h (28 2(2m+a) nEl ,%1‘
and finally (33
— m In order to solve Eq(32), we approximaté(t) and Ry(t)
knn(K,N) = 2 InN. (29 by their dominant terms for largeands, as computed above

for the different possible values af

That is, two vertex correlations are independent of the degree (i) -m<a<0. In this case we have
and grow with the system size asNinin agreement with the
behavior expected for an uncorrelated scale-free network t\A
with degree exponeny=3, Eq.(3). Numerical simulations ky(t) = (m+ a)(;) . R(t) = BL2p)(m+a)’tPsi .
of the BA model[28] show actually a very weak dependence
on k in the kyn(k,N) function, compatible nevertheless with
the behavior given by our rate equation approach in the larg
k limit. This k dependence, evidentiated at small values of
the degree, cannot be detected within our approach, since
has been formulated in the continuduapproximation. (m=1)(m+a)%(28)

(i) a>0 (i.e, B<1/2, y>23). In this situation, the sum- M(t) = B2 (2P 1 2F sl My(s).

(34)

ntroducing this expression into E¢32), we obtain at lead-
|Hg order

mation in Eq.(23), =.,j%#=s""%$/(1-2p), is divergent, B (26-1(2m+a)
and thereforeRy(s) becomes independent ef This leads to (35)
B
Ry(t) = B(m+ a)2<£> In(£> In order to computéV(s), we observe that the double sum-
S S mation in Eq.(33) takes the form at largse
m+ a)? t\#
+{m(1—a)+’82__—23)—a2}(;> . (30 s
S= 2 n28 2 it=>n%(Ins-Inn)=¢2p)Ins,
and finally the dominant behavior for the correlation function j=n+l n=1
is (36)
— k
Knn(K,N) = (m+ a)In(—). (31)  since=’_;n"?Inn is convergent for3>1/2. Thus we ob-
m+a tain
In this caseRN(k,N) is independent of the network size, 3
and increases logarithmically witki For y> 3, LPA yields M.(t) = Bz(m H(m+a) 5(2/3)( 2p-1_ 2b-1)g1
networks with weak assortative mixing. s (2B-1)(2m+a)
(m-1)(m+a)° _
B. Three vertex correlations B (2P 2Inss, (37)

2m+a
In order to estimate three vertex degree correlations by

means of the clustering spectruatk), we start from the rate and from here the expression for the three vertex correlation

equation Eq(10), which for the LPA model takes the form function follows:
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2p%(m-1)(m+a)> (2P N2B-24-2+18
(26-1(2m+a)

+ 2B%¢(2B) (M- 1)(m+a)>~2k
2m+a

c(k,N) =

(|n N) NZB—Zk—4+2/B_

(38)

To understand the asymptotic behavior ak,N), two
limits have to be taken, corresponding to laigjand largek:
(1) At fixed and largeN, the leading behavior at large
is c(k,N)~ N2-2-2+1B: (2) at fixed k= (In N)#£-D and
large N, the leading behavior is insteadc(k,N)

~N?-2|n Nk #*2#_ Therefore, in the numerical simulations
we should expect to observe a crossover between these two

scaling regimes.
(i) a=0. We now have

2
ke(t) = m\@ Ry(t) = m;\glnt,

which yields

(39

m?(m-— 1)

Mq(t) = ™ (In?t=1n%s) + M(s). (40)

Since B=1/2, M(s), as given by Eq(33), can be easily
shown to be

m?(m-1
QmZS

M(s) = , 41
(9= (41
and we obtain
m(m- 1)
My(t) = —— In?t, 42
s(t) 16 (42)
which results in a clustering coefficient at lariye
m-1In’N
KN) = ————. 43
c(k,N) 8 N (43)

We recover the well-known result for the BA model tha

the clustering spectrum is constant, and scalingresN)/N,

as observed in Ref34]. It is worth noting that the compu-
tation of the boundary conditio@#1) is essential in recover-

ing this result. Interestingly, from E¢42) we can also com-

pute the total number of triangles in BA networks as a

function of the network sizeT(N), i.e.,

N —
T(N):éj MS(N)ds:mWN, (44)

1 48

PHYSICAL REVIEW H1, 036127(2005

value of the numerical prefactor, due to the continuous de-
gree approximation.
(iii) a >0. For this range of values & we have

Ky(t) = (m+ a)(E)B Ry(t) = B(m+ a)2<£>ﬁ In(£>
s/’ s s/’

(46)
yielding
_ o m-Dm+a® ) e (E)
M) = 7 g B i ¢
B-1_ 281
+ 321_—2;} £M(9). (a7)

For the evaluation ofM(s), we observe that the double sum-
mationS defined in Eq(36) shows now a power-law diver-
genceS=s'"%/(1-2p)°. Thus we have

_ 3
wg{ i)

— 2
M(t) = & (2m+a)(1 - 28)
2551 t}
+ - 1

48
1-28 (48)
yielding a three vertex correlation function
_ 48%(m-1)(m+a)%1k
c(k,N) = A (m-1)(m+a) Nk 218, (49

(2m+a)(1 - 28)?

Therefore, fora>0 (i.e., 8<1/2), we obtain that the aver-
age clustering of the vertices of degieés a growing func-
tion of k, scaling as(k,N) ~ Nk 2*Y5, Since by definition
the clustering must be smaller than 1, this growing behavior
must be restricted to degree values N#/(125),

C. Computer simulations

In order to check the analytical results obtained in this
section, we have performed extensive numerical simulations

¢ of the LPA model. Simulations were performed for system

sizes ranging fronN=10° to 1(F, averaging over 100 net-
work samples for each value &f anda. We focus in par-
ticular in the rangea<0 anda>0, which have not been
previously explored(for numerical data corresponding to
a=0, the BA model, see Reff28,49).

In Figs. 1 and 2 we explore the behavior of networks
generated foa<<0. We consider first the average degree of

the nearest neighboaN(k,N). Figure 1a) corresponds to
m=4,a=-2, values that yielgB=2/3 andy=2.5, while Fig.
1(b) plots data fom=4,a=-3, corresponding t@=4/5 and

where the factor 1/3 comes from the fact that in the compu-y=2.25. The dashed lines represent the power-law behavior
tation each triangle is seen once by each of its three verticeR=2*# expected analytically. We observe that, as the size of
This value can be compared to the exact result obtained ithe network increases, the data follow the predicted scaling
Ref. [48], namely, kan(k, N) ~ N2A~%2*18 on |arger and larger ranges. Never-
theless, the logarithmic corrections present in Etf) are
clearly visible from the largé deviations shown by the data
(middle plots in Fig. 1 The logarithmic correction can, in
We can see here that, even though our rate equation approafatt, be taken into account if one rescalgg(k,N) appro-
captures the correct scaling will, it underestimates the priately; namely, if we define

m(m-1)(m+ 1) In?

T(N) = 48

N. (45)
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10 £ 10 10

10! 10 10 10 10

FIG. 1. Average degree for the nearest neighbors of the vertices g|G. 2. Clustering spectrura(k,N) for the LPA model form
of degreek, kyn(k,N), for the LPA model fom=4, with a=-2 (a) =4, witha=-2 (a) and -3(b). Symbols correspond to the different
and -3 (b). Symbols correspond to the different system sikes system sizesN=10" (O), N=3x10* (), N=10° (¢), and N
=10 (O), 3x 10* (O), 10 (), and 16 (A). Top plots: Raw data. =10° (A). Top plots: Raw data. Middle plots: Data rescaled by the
Middle plots: Data rescaled by the size prefachthr24. Bottom size prefactoN?~2#, corresponding to largk. Bottom plots: Data
plots: Data rescaled by the size prefactor with logarithmic correcrescaled by the size prefactdi?=%#/In(N), corresponding to small
tions. The dashed lines represent a power-law decay with exponeit The full and dashed lines represent power-law decays with expo-
-2+1/B. nent 2+1/B and —-4+2 3, respectively.

both values of, where we can see that the first points in the
), (50) graphics for different values dil collapse onto the same
curve, with approximately the predictdddependence. For
then, from Eq.(26), we expect large values ofk, on the other hand, we expect instead a
scaling c(k,N) ~N2#-%2*18 which is again recovered in
Er\?lfl(‘(k' N)NL26 ~ k2418, (51) the middle plots of this figure, showing a better collapse in
the intermediate range df values. At very largek values,
In the bottom plots of Fig. 1 we draw the rescaled averagdinally, the neglected logarithmic terms come into play, af-
degree of the nearest neighbors with logarithmic correctiondecting the scaling of the data. It is important to notice the
The collapse of the data is indeed surprisingly good, giverimportant role played by the boundary condition Efl),
the numerous approximations and leading order cancellavhich is responsible for the second term in E8g), giving
tions made in our calculations. The remaining discrepancy dhe correct scaling behavior for small
very largek is presumably due to the subdominant terms we In Fig. 3 we finally explore the average degree of the
have neglected. nearest neighbor&@) and the clustering spectruth) for the
In Fig. 2 we represent the clustering spectraiik, N) for LPA model witha>0. We focus in particular on the values
the same parameters as before, ines4, a=-2 (a) andm  M=4 anda=2 (top plots, yielding 5=2/5, y=3.5; a=5
=4, a=-3 (b). The top plots represent the corresponding(middle plots, with 8=4/13, y=4.25; anda=10 (bottom
nonrescaled raw data. According to the solution provided irPlots), which corresponds tog=2/9, y=5.5. For the
Eq. (38), for small values ok an asymptotic scaling is ex- kyy(k,N) function our theoretical analysis predicts a function
pected of the fornt(k,N) ~N?#~2In Nk "2/, This behavior independent of the network size, and slowlggarithmi-
is approximately recovered in the bottom plots in Fig. 2 forcally) growing with the degree. These predictions are con-

KTk, N) = Ky (k,N) = (m + a)In( p——

036127-7



A. BARRAT AND R. PASTOR-SATORRAS PHYSICAL REVIEW H1, 036127(2005

limy_,..c(k,N)=0. However, for many complex networks,
such as the interng®], we observe a function(k) scaling
with k, together with a finite clustering.

Several models have been proposed which reproduce this
feature. In particular, Dorogovtsev, Mendes, and Samukhin
(DMS) introduced in Ref[43] a scale-free growing network
with large clustering coefficien€. The model is defined as
follows: At each time step, a vertex is added and connected
to the two extremities of a randomly chosen edpeas form-
ing a triangle. The resulting network has a power-law degree
distribution P(k) ~ k™3, with (k)=4, and since each new ver-
tex induces the creation of at least one triangle, we expect
this model to generate networks with finite clustering coeffi-
cient. We consider here a generalization of the DMS model,
10° —— — in which every new node is connected to the extremities of

w@%@j

a=2 m/2 randomly choseredges wherem is an even number.
The original model corresponds thusro=2, and this gen-
eralization allows one to tune the average degree, setting it to
(ky=2m.

It is important to notice that this model actually contains
the LPA mechanism in a disguised form. Indeed, the prob-
ability to choose a vertes is clearly proportional to the
number of edges arriving &t i.e., to its degred,. At time t
there aremt edges so thaEks=2mt and the probability to
chooses when choosing one edge kg/(mt) [Zks/(mt)=2
since one chooses indeed two verticékhis process is re-
peatedm/2 times and thus at each time step the probability
to chooses is k /(2t).

FIG. 3. Average degree for the nearest neighbors of the vertice('éhc-)rizlaS CS)P%Vr:Setgg; ?gﬂtr?i;ga%:ff;ﬂguﬁzt:mg t/he?t;iinsdom

of degreek, kyn(k,N) (&) and clustering spectruk,N) (b) forthe  chosen with the usual preferential attachment probability
LPA with m=4 and positive values &f. Symbols correspond to the ks/(2mt), and then one of its neighbors is chosen at random

different system sizedl=10* (O), N=10° (), and N=10° (¢). . L o ’

o : o o i.e., with probability 1k

Top plots:a=2. Middle plots:a=5. Bottom plots:a=10. Data for It is then clear that the rate equation for the degree is
c(k,N) have been rescaled by the theoretical size prefadtdrhe .

dashed lines represent a power-law behavior with exponent _gven by

+1/B. diy(t) _ kyt)

10 ;10 10

) 52
dt 2t 52

firmed in Fig. 3a). It is noteworthy that the theoretical pre-

diction becomes more accurate for large While the leading tokg(t)=m(t/s)*?and to a scale-free degree distribu-
collapse is quite good fa=5, the graphs are a bit scattered tion of the formP(k) =~ 2m?k3,

for the smallest value of considered. This fact is due to the ~ We are now in position to write down the rate equations
slow convergencéasN grows to the theoretical asymptotic for the network correlations, taking into account that, each
form for small a. Analogously, the clustering spectrum time a vertex is chosen, so is one of its neighbors.

shows the predicted scalirgk,N) ~ N~k 2% [Fig. 3(b)].

The dependence on system size is correctly captured by our A. Two vertex degree correlations

analysis for larger values d. In this range, however, the . . . .
power-law dependence doseems to depart from the theo- | At each time stepBS(t) can increase either if the vgrtex
retical exponent 2+1/8. This apparent departure can be IS chosenand therR; increases byn+1 because a neighbor
due to the limited range of degrees for such large values dff SIS also chosenor if a neighboyj is chosen together with
the degree exponefthe degree range decreases for increas@ Neighborl of j, with I #s (and thenRs increases by )1
ing a), as well as to the subdominant terms neglected in thd Neérefore, we have that

asymptotic expression E¢49). dR.(t t ki (t 1
_%():(m+1)@+ 2 _J(_)(l__)
dt 2t S 2 ki(t)
IV. GROWING NETWORKS WITH LARGE CLUSTERING
: : : _mk(®  R(®
As we have seen in the previous section, the LPA model - + of (53

yields a clustering spectrumm(k) that, even if presenting a
nontrivial scaling, vanishes in the thermodynamic limit, i.e., This is exactly the same equation as for the LPA vth0,
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i.e., the BA model. Moreover, the boundary condition for

R4(S) can be written as T(T - 1>l2 > kj(s)<1 _— >k|(s)’ (59

2\ 2 2215w ms ki(s)/ ms
S
mss ki(s) 1 ie., th Il verticgsof the probability that
o= B9 e 41+ —= [K(s)+ 1]}, i.e., the sum over all verticgsof the probability that, among
R(®) 2% 2ms{ i) |§(D kj(s)[k'( )+ 1] the m/2 edges chosen by the new nodeone hasj for

(54) extremity, and another one has a neighbai j for extremity
[the factor 1/2 is due to the double counting of the liks)
where, for each one of the/2 edges chosen by the first ~and(l,j)]. This yields
term corresponds to the contribution jofchosen with prob- S (= 2)in?
T ke R m m- m m-2)In°s
ability k;/(2mg], and the second term to the contribution of M(s) = — + o 522 Ri(9)[kj(s) - 1] = 5 n

a neighbotl of j (chosen with probability 1k;). This expres- 16s
sion is easily reduced to (60)
1< ki(S)[k(s) +1] P and finall
R(s) == ©lk© +1]_m Ins. (55) y
275 S 2

t m m(m-2) .,
Mt) = my |~ — D+ T2 2 2y 61)
Once again we obtain the same result as for the LPA with s 2 16s

a=0. The conclusion is that thiey(k,N) function for the  The clustering spectrum can therefore be written as

generalized DMS model is given by EQ9): the two vertex
2k—-m N m-2

correlations are independent of the degree and grow with the Tlk,N) = In2N. (62)
network size as I, in the same fashion as in the BA model. ' k(k—-1) 8N
The clustering spectrum is now finite in the infinite size
B. Three vertex correlations limit,
In order to write down the rate equation fd(t), we 2k —m
have to take into account that, at each time staf2 tri- ‘c(k) = lim ¢c(k,N) = k-1 (63)
N—oo -

angles are formed by the choice of/2 edges, and that,
moreover, additional triangles may be formed for-2 by |t is interesting to see that, for the original model with
choosing two different edges with a common vertex. At each:2, the finite size corrections actually vanish and we obtain
time step, the increase M(t) is thus given by two terms.  the resulic{k,N)=2/k, independent oN. This scaling is also
The first one comes from choosing the vertewith prob-  simijlar to that obtained for the Holme-Kim model j84].
ability ky(t)/(2t). In this caseMs increases by 1, since one of The knowledge of the exact form of the degree distribution
the neighbors of is also chosen. The second contribution for m=2, P(k)=12/[k(k+1)(k+2)] [43] allows us to obtain
comes from the following situation: one of the edges chosefihe average clustering coefficientC(m=2)=272-19

is s=I, and another one ig-1", with j e V(s), j#I, andl” <0739 More generally, for largm, approximatingP(k) by
#S. . _ 2m?/k® and sums by integrals yields
The resulting rate equation reads
M _KY (0 KO, 1) cim= | pukitide= 2n?—am- 13
dt 2t 2\2 mt ;g Mt ks(t)
m
k() m-2 +2mP(2 - m)In(—_ ) . (64)
= ——[k(t) = LIR((1). 56 m-1
ot 4mt2[k5() R() (56)

We useks=myt/s andR,=n?In t\t/s/2 to obtain C. Computer simulations

dM(t) m m(m-2)nt We have performed extensive numerical simulations of
dt 2\ts 8st : 57 the generalized DMS model studied in this section. We focus

on the clustering spectrunik,N) since the results fdiy(k)
whose solution reads are expected to be equal to the case of the BA model. Figure
4(a) shows the excellent agreement between the predicted
M(D) = m \/E_ 1)+ m?(m - 2)(In2t— 29 + Md(s) behavior Eq.(62) and the numerical data for various values
s s 16s s\ of m and sizes ranging fromi=10" to 1¢f. As expected, no
(58) finite size corrections are present far=2, while they are
correctly described by the analytical approach for langer
The boundary condition is again given by two contribu- Moreover, the prediction for the average clustering coeffi-
tions. First,m/2 triangles are created by attachisgo m/2  cientC(m), Eq. (64), is also shown to be in excellent agree-
edges. The second contribution is given by ment with numerical data, Fig.(d).
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10—y assigned to the edge connecting verticesdj. We assume
F = ] the elementsy; to be symmetric, that isy; =w;;. Each ver-

Z10'E 3 texi is characterized by both its degreeand its strengtla;,

S defined as
10 - E

% <&t gy = 2 W” (65)
o'k jevi)

.Et‘ 10'2§‘ For nonweighted networks, in whicly;=1, we obviously
10°F (a) recovero;=k;. The model proposed in Re#5] considers a _
0 :0 , e e e growing network in which at each time step, a new vertex is

0 10 klO 10 added to the system and connected withedges to older
vertices. The probability that the new vertiels connected to
0.8 : . : . ; s (s<t) is given by the connection probability
21|:2—19 _"_"' — theoretical C(m;s 7]
®  Numerics (N=10')
oot s = <20 (66
2 EJ- aj(t)
© o0t L .
that is, linearly proportional to the strength of the old vertex
s. Each new edge carries an initial weighg=1. Addition-
02| ally, there is a dynamic rearrangement of the weights belong-
(b) ing to the edges of the receiving vertex: When the vesex
‘ , . , . receives a new connection, the weight of its edges is in-
0 5 m 10 15 creased by an amount

FIG. 4. (a) Clustering spectrura(k, N) for the generalized DMS
model. The top plot corresponds to a system $izel0%; the bot-
tom plot is forN=10°. Symbols correspond to different values of
the average degree=2 (O), 4 (LJ), and 8(©). The dashed lines  Thjs rule implies that, for each new vertex added, the total
are the theoretical predictions given by E62). (b) Average clus- strength of the network is increased by an amount 2
tering coeﬁicieth(m) as a function ofm, fqr networ!<s. of sizeN +2mé, therefore, the normalization constant in HG6) is
=1C. The fuII_ line represents the theoretlcal prediction mﬁ)é Ejaj(t)ZZm(l+5)t. It can be shown, within the continuoks
IT; dashed line marks the theoretical value for2, C(2)=2m approximatior[45], that this model generates scale-free net-

' works, characterized by the quantities

We .
W — W + 5;531, jeVs). (67)

V. WEIGHTED GROWING NETWORKS t\8 odt) + 2ms
oyt) = m(-) vk ==

In the previous sections we have applied the rate equation S 26+1
formalism to analyze two and three vertex correlations in (68)
standard models with either vanishing or constant clustering
coefficient. The formalism for the two vertex correlations, with exponents
however, is not limited to these particular cases, and can be
easily extended to analyze more complex growing network _26+1 _46+3
models. As an example, in this section we will consider a “os+2 T os+1
recently proposed growing weighted network mofiéb).
Weighted networks[50] are a natural generalization of Therefore, fors>0, this model yields power-law degree dis-
graphs in which a real quantity is assigned to each edgeributions with degree exponente 12,3 and 3>1/2. The
representing the importance or weigh of the interaction  cases=0 recovers the BA model.
between the vertices and j. Recently[51], it has been It is easy to see that, at the level of the mean field rate
pointed out that real weighted networks present a complexquations in the continuous approximation, the weighted
architecture, characterized by broad distributions of Weighthrowing network model described above can be mapped into

as well as nontrivial correlations between the values of th% growing network with LPA and negative parameﬂ@'iven
weights and the topological structure of the network. by

Motivated by these findings, Ref45] proposed a dy-
namic growing weighted network model, in which new 2msé
edges are attached to old vertices with a connection probabil- a=- o5+ 1 (70)
ity depending on the strength, or total weight, of the vertex.
In order to define the model, let us consider a weighted net- Therefore, we expect to observe the two and three vertex
work characterized by the elememtg defining the weight  correlation functions

. Pk~ k7,

(69)
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= nw@@( m Y*”z_ ) dQq(t) ( 5>Qa) m+ 8- 2md o(t)
knn(k,N) = N2B-1-2+16 ——==| g+ ==+ > 76
(k. N) 21+ \25+1 dt 1+58) t 21+8) t (76)
+ m In<25+ lk), (70) Inserting the value ofr((t) given by Eq.(68), the general
26+1 m solution of this equation is
(m_ 1)(25"' 1)2( m )2_1/'3 2B-21,-2+1/8 B+81(1+5) m <t>ﬁ
~ + t) = Ag(sS)t -—(m+s6-2mo)|-| . (77
c(k,N) 256+ D7 \Zo+1 N2k Qs(t) = Ag(s) 25( ) < (77)

(m-1)(26+1)?

+{(2B) Since all new edges have an initial weigig=1, the initial
4(8+1)°3 condition for Q(t) coincides with that oRy(t). Solving for
m \4-28 Ay(s) from Eq.(24), substituting for the corresponding value
><< ) (In N)NZB-24+18, (72)  of agiven by Eq.(70), we finally obtain in the larg& andN
26+1 limit
A. Weighted two vertex correlations K{n (K, N) = MNZIH_ (79)

_ 21+ 6)(26+1)

The definition of thekyy(k) function we have computed
above completely neglects the effect of the weights. ThereThat is, in this model the weighted average degree of the
fore, it provides a biased view of real correlations in thenearest neighbors is independentkptignaling the absence
system(for example, two neighbors with the same degreeof two vertex weighted correlations, as indeed found numeri-
but widely different weights give the same contributiom  cally in Ref.[52]. There is, however, a scaling with the sys-
order to take into account the effect of the weights associatetém size, given by the factdd?#, which is the same as that
with the edges, a different correlation measure has been préeund for the nonweighted correlations for the same value of
posed, the weighted average degree of the nearest neighbars

?K,VN(k) [51], defined as follows:
B. Computer simulations

1
) > k(0. (73) We have performed numerical simulations of the
IsiHjen weighted growing network model described in Refb], for

. s — — . . sizes ranging fronN=10° to 1, focusing on the behavior
This definition implies thakyy(s) > kun(s) if the edges with ¢ yhe ayerage degree of the nearest neighbors, for both its
largest weight point to the neighbors with largest degreepqneighted and weighted versions. In Fig. 5 we plot the
while k() <kn(S) in the opposite case. Therefolkin(S)  average degree of the nearest neighbiggk,N) for m=2
measures the effective affinity to connect with large or small, 4 s=2 (a) which corresponds to a network wif=5/6
degee neighbors, according to the magnitude of the interacyzz'zo ands=5 (b), that yields@=11/12, y=2.09. As ex,-
t'oh weight. The_ we|g_hted average degree of the nearegiocied from the analytical analysis performed above, the ob-
neighborsk{y(k), is defined as the average kffy(s) for all  tained scaling is analogous to the LPA model: the numerical
the vertices with the same degrke data follow the predicted forrRyy(k,N) ~ N2~k 2*18, The

We can study analytically the weighted two vertex corre-pq10m plots highlight the presence of the logarithmic cor-
lations by seeking a rate equation for the quantity rection of Eq.(71), by plotting the rescaled function

_Vl\\IIN(S) =

Q)= 2 wg(t)kj(b). (74 _ _
e KESTK,N) = k(K N) = 25’1‘ : In(25+ !

According to the rules defining the model, at each time step
Q(t) can increase its value by two mechanisfi3:if anew |, this case, it is noticeable that the rescadik,N) func-
vertex is directly attached tg Q(t) increases by an amount jo with logarithmic corrections yields a better data collapse

m+8Qs/ a; (2) if a new vertex is attached to a neighljoof  than that shown by the LPA model. Even though both models
s, then Q) increases byws;+dws;/ o+ dwsikj/ oj. There-  gre jdentical at the mean field level, the existing microscopic

). (79

fore, the rate equation satisfied Ry(t) is differences seem to yield smaller subleading corrections for
4oy s the weighted growing network model.

d_s = ml'[s({a},t)<m+ _Qs(t)) + > mil;({o},1) For this same set of parameters, we have also evaluated

t ay(t) ieV® the weighted average degree of the nearest neighbors,

W, K (t) ?‘,’\‘VN(k,N), shown in the middle plot in Fig.(8) (filled sym-
X | Wej+ &=+ AW, ’ (75 hols). We observe that thil’y(k,N) is indeed, as expected,

o) oyt : :  SXPE
independent ok, and scales with the system size with the
which, in terms ofo((t) and Qq(t), yields predicted factoN?#1,
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by discussing the effects of boundary conditions. Applying

this framework to several growing network models, we have

obtained asymptotic expressions for the functiégg(k,N)

and c(k,N), showing both the degree dependence and the
scaling with the system size, due to finite size effects. As a
general result, we conclude that networks generated by LPA
with degree exponeny<<3 exhibit the scaling behavior

,m(k,N)N'm

I
SZ W kNN(k1 N) -~ NZB_lk_2+1/B1 (80)
10 1
§ lo.zf_ ] previously obtained by means of scaling argumewig],
£ b (@) 3 which is the signature of disassortatifreegative two vertex
R107EL, ']';)1 — ""'1'(')2 — ""'1'(')3 — ""'1'(')4 correlations. We have also been able to identify the presence
k

of logarithmic corrections in models with LPA, which clearly
appear in computer simulations of the model. For this LPA
model, we also observe the presence of small assortative
correlations for degree exponenis>3, characterized by a
logarithmic growth of thekyy(k,N) function, which is oth-
erwise independent of the network size. The situation is more
complex in what concerns the clustering spectrcik, N).

For v>3, we observe the presence of a crossover between
two power-law decays in the degreelk) ~k ¢, with a=
—-4+2/B for k=(InN)#?D  and a=-2+1/8 in the

% asymptotic limit, while fory>3 we obtain an increasing

‘5‘ 10-2; 1 ‘c(k,N) function, limited by an upper degree cutoff.

s 10°F ® 4 From these results we can conclude that the valeel

b gt e observed in the literaturg82,34 is not a generic feature of
10 0, 10 10 all scale-free network§41]. However, we notice that LPA

. . yields networks with a vanishing clustering coefficient. In
FIG. 5. Average degree for the nearest neighbors of the Vert'c%rder to assess the possible effects of this factor, we have
of degreek, kun(k,N), for the weighted growing model fan=4,  consjdered the DMS mod@#3], which generates networks
with 5=2 (a) and 5(b). Symbols correspond to the different system iy 5 Jarge value of, as observed in real networks. In this
sizesN=3x 10° (0), N=10" (L)), N=3x 10" (0), andN=10° (4). " o350 "\ obtain a lack of two vertex correlations, while the
Top plot: Raw data. Middle plot: Data rescaled by the size prefaCtOEIustering spectrum scales @) ~ KL An analogous result
N1~2%, Bottom plot: Data rescaled by the size prefactor with loga-. btained for the similar Hol K'. dE84. 44
rithmic corrections. The dashed lines represent a power-law deca'? %\Szr}?nal ?)roinf \?\;g“hzrve 2&3\% Itr;l]er?lc()axibili’ty O'f the rate

with exponent 2+1/8. The middle plots display also the values of . )
1-26W , : . equation approach to compute two vertex correlations by ap-
NPkn(k,N) (filled symbolg, which collapse onto a horizontal Ving i | d iahted . K
line, in agreement with the analytical prediction E@8). plying It. to a.recenty proposed weighte gr_owmg netwpr -
' model, in which edges are further characterized by a distri-
bution of weights that is dynamically coupled to the evolving
topology of the network. For this model, we are able to ex-
tend our formalism to deal with weighted two vertex corre-

Akcom deT:tehthelgr_etlclal chara<|:terr|]zat|or_1 of a grofw Ihng Netjations, which measure the effect of the strength of the inter-
work model should imply not only the estimation of the cor- i« ptveen neighboring vertices.

responding degree distribution, but also an analytical study The very good agreement shown between our analytical

of the functional form of the correlations between the de'estimates and numerical simulations suggest that the method

greebs, Otf nle'%zbﬂmg \f{ﬁ_rtlces. Capltarlllzmg on _tge dWO;k Ofproposed in this paper to compute two vertex correlations is
zabdet al. [34,41, in this paper we have provided a for- in general valid to characterize growing citation network

malism to compute two vertex correlations, expressed b odels. An obvious improvement would be to extend it to
means of the average degree of the nearest neighbors of the_, \vith models in which vertex and edge removal, and

vertices of degrek, kyy(k), valid for growing network mod-  edge rewiring, are allowed. This inclusion, however, would
els generated by means of the preferential attachment mechgrobably lead to quite complex nonlocal rate equation,
nism and belonging to the class of so-called citation netwhose solution would be much harder to tackle.

works. The formalism is based on a rate equation in the

continuousk approximation, together with the appropriate ACKNOWLEDGMENTS
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